

AVR336: ADPCM Decoder

Features
• AVR Application Decodes ADPCM Signal in Real-Time
• Supports Bit Rates of 16, 24, 32 and 40 kbit/s
• More Than One Minute Playback Time on ATmega128 (at 16 kbit/s)
• Decoded Signal Played Using Timer/Counter in PWM Mode

Introduction
Adaptive Differential Pulse Code Modulation, or ADPCM, is a digital compression
technique used mainly for speech compression in telecommunications. ADPCM is
a waveform codec that can also be used to code other signals than speech, such
as music or sound effects. ADPCM is simpler than advanced low bit-rate voice
coding techniques and doesn’t require as heavy calculations, which means
encoding and decoding can be done in a relatively short time.

ADPCM is usually used to compress an 8 kHz, 8-bit signal, with an inherent flow
rate of 64 Kbit/s. When encoded at the highest compression ratio, using only 2 bits
to code the ADPCM signal, the flow rate is reduced to 16 Kbit/s, i.e. 25% of the
original. Using 4-bit coding, the flow rate is 32 Kbit/s, i.e. 50% of the original, and
the quality of the signal is fine for most applications.

This application note focuses on decoding the ADPCM signal. It uses the on-chip
timer/counter to create a Pulse-Width Modulated (PWM) output signal, which is
then passed through a simple, external filter. The filter consists of just a few
external components and turns the digital signal into analog, suitable for
connecting to speakers.

For further information about D/A conversion with Timer/Counter, please refer to
Application Note AVR335: Digital Sound Recorder with AVR ® and DataFlash ®.

Figure 1. ADPCM decoding on an AVR microcontroller

ADPCM
Encoder

ADPCM
Decoder

on an AVRCompressed
Data

Input
Output

8-bit
Microcontrollers

Application Note

Rev. 2572A-AVR-11/04

2 AVR336
2572A-AVR-11/04

1 Theory of Operation
The principle of ADPCM is to predict the current signal value from previous values
and to transmit only the difference between the real and the predicted value. In plain
Pulse-Code Modulation (PCM) the real or actual signal value would be transmitted. In
ADPCM the difference between the predicted signal value and the actual signal value
is usually quite small, which means it can be represented using fewer bits than the
corresponding PCM value.

Depending on the desired quality and compression ratio, a difference signal is
quantized using 4, 8, 16 or 32 levels. The block diagram of an ADPCM encoder is
shown in Figure 1-1. For more information on how the encoder works see Reference
2.

Figure 1-1. Block Diagram of ADPCM Encoder.

)

) (k s l

)(1 ka

(ky

)(ky

)(kd) (k d q

) (k t r

)(ksr

)(kse

)(kI

)(2 ka

)(ktd

) (k s e
)(ky

)(kyl

) (k I

DIFFERENCE
SIGNAL

CALCULATOR
ADAPTIVE

QUANTIZER

ADAPTIVE
PREDICTOR

INVERSE
ADAPTIVE

QUANTIZER

RECONSTRUCTED
SIGNAL

CALCULATOR

TONE AND
TRANSITION
DETECTOR

QUANTIZER
SCALE FACTOR

ADAPTATION

ADAPTATION
SPEED

CONTROL

Input
signal

Output signal

The decoder shown in Figure 1-2 takes the quantized value, performs an inverse
quantization, and subtracts the result from the predicted signal to get the decoded
signal.

The decoder is described in more details below. Headings refer to block names in
Figure 1-2. For exact formulas, see “Appendix B: Formulas”.

 AVR336

 3

2572A-AVR-11/04

Figure 1-2. Block Diagram of ADPCM Decoder.

)(1 ka

)(ky

)(kdq

)(ktr

) (k s r
)(kse

) (k I

) (2 k a

)(ktd

)(ky

)(k y l

ADAPTIVE
PREDICTOR

INVERSE
ADAPTIVE

QUANTIZER

RECONSTRUCTED
SIGNAL

CALCULATOR

TONE AND
TRANSITION
DETECTOR

QUANTIZER
SCALE FACTOR

ADAPTATION

ADAPTATION
SPEED

CONTROL

Input ADPCM
Signal

Reconstructed
Output Signal

1.1 Inverse Adaptive Quantizer
)()(ln2)(kykd

q
qkd +=

This block calculates the linear quantized difference signal)(kdq from the logarithmic
quantized difference signal)(ln kdq and the adaptation factor)(ky . The logarithmic
quantized difference signal)(ln kdq is obtained from a static look-up table using the
ADPCM codeword)(kI as index. The linear domain difference signal is calculated
by raising 2 to)()(ln kykdq + .

1.2 Quantizer Scale Factor Adaptation
The scale factor)(ky used in the inverse adaptive quantizer is computed here. The
scale factor)(ky consists of two other factors; the fast (unlocked) scale factor

)(kyu and the slow (locked) scale factor)(kyl . Two scale factors are needed to
handle different types of signals; a fast scale factor allows adaptation to signals with
large fluctuations (e.g. speech), while a slow scale factor is needed when the signal
changes slowly (e.g. tone signals). The scale factor is a linear combination of these
two. The ratio is determined by speed control parameter la , described in the next
section.

1.3 Adaptation Speed Control
The adaptation speed is controlled by the parameter la . It approaches unity with
speech signals and zero with audio band data signals. To obtain la two measures of
average magnitude (long- and short-term) of ADPCM codeword)(kI are calculated.
The difference between these two indicates how the average magnitude of)(kI is
changing. If the difference is small, the magnitude of)(kI is constant; if the
difference is large, the magnitude of)(kI is changing, as indicated by the speed
control parameter pa . The parameter also takes into account the special cases
where transitions are detected, or when the signal is idle. Finally, the limited speed
control parameter la , is obtained from pa (ranging from zero to two) by limiting it to
range between zero and one. This is done asymmetrically to delay the transition from
fast to slow adaptation mode.

4 AVR336
2572A-AVR-11/04

1.4 Tone and Transition Detector
Tone and transition detections are included to improve the codec’s response when
handling data signals instead of speech.

If the signal uses only a narrow frequency band (e.g. tone signals), the quantizer is
set to fast adaptation mode.

If transitions are detected, the quantizer is set to fast adaptation mode)1(=rt and
the coefficients of the adaptive predictor are set to zero.

1.5 Adaptive Predictor

ezepe ssks +=)(

The adaptive predictor calculates the signal estimate)(kse from the quantized
difference signal)(kdq . It uses two adaptive structures; a second-order structure
that models the poles (eps), and a sixth-order structure that models the zeroes (ezs).
The coefficients in both structures are updated with a simplified gradient algorithm. In
order to ensure stability the coefficients in the pole-modeling structure must be
limited. The formulas for updating the coefficients in the zero-modeling structure are
slightly different for different bit rates (5-bit vs. 2-, 3-, or 4-bit).

If a transition is detected, all predictor coefficients in both structures are set to zero
(see previous block).

1.6 Reconstructed Signal Calculator
)()()(kdksks qer +=

The reconstructed signal)(ksr is calculated by simply adding the signal estimate
)(kse to the difference signal)(kdq .

2 Implementation
This section describes the software implementation of the decoder.

2.1 Software
The decoder is implemented using IAR Systems C compiler, with some sections
written in assembler. The main structure of the decoder shown in Figure 2-1 is simple;
the program waits for a user to push a button, and then starts to decode pre-encoded
samples from the Flash memory. It first calls get_code() which reads the data from
the Flash and extracts the ADPCM codeword from it (one byte contains several
codewords).

 AVR336

 5

2572A-AVR-11/04

Figure 2-1. Flowchart of Main Program.

Button
pressed?

Start

init_ADPCM()

init_PWM()

get_code()

End of
recording?

NO
decode()

Output
buffer ready for

write?

YES Decoded Sample
to output buffer

NO

YES

YES

NO

Next, the decode() –function is called, as shown in Figure 2-2. The function calculates
the signal estimate (see predictor()), the quantizer scale factor y, and the difference
signal dq. Possible transition signals are detected, and scale factor step size
parameters and adaptive predictor coefficients are updated. Finally, the decoder
detects possible tone signals and updates adaptation speed control parameters.

Figure 2-2. Flowchart of Decoder-Function.

predictor()

Scale factor
adaptation

Difference Signal
dq calculation

Transition
detection

update_pred_coeff()

decode()

Return Decoded
Signal sr

Speed Control
param. update

Scale factor step
size update

Tone
Detection

The reconstructed signal sr is output through a simple D/A-converter, consisting of
timer/counter1 in PWM mode (output to port B, pin 5) and an external filter.

6 AVR336
2572A-AVR-11/04

2.1.1 Compliance with ITU-T G.726

The software follows quite closely what has been described above, but some
changes have been made for more efficient computation. The ADPCM-standard ITU-
T G.726 defines some calculations involving reconstructed signal)(ksr to be made
with floating point arithmetic. These calculations are skipped in this implementation
and are instead realized using fixed-point arithmetic. This has been done in order to
save processor clock cycles. Using fixed point instead of floating point arithmetic
could cause a small reduction in the quality of the reconstructed signal.

Two blocks have been left out completely, namely the µ-law and A-law conversion
and synchronous coding adjustments. µ-law and A-law conversion are used to reduce
the number of bits per sample. Since the output directly drives a D/A-stage, there’s no
need for µ-law/A-law -conversions.

The synchronous coding adjustment defined in the G.726 standard has also been
skipped in this implementation. The purpose of the synchronous coding adjustment is
to prevent distortion in synchronous tandem codings (e.g. ADPCM-PCM-ADPCM),
which is not used in this application.

To achieve best possible quality, the encoding and decoding processes should use
the same algorithms, i.e. the encoding should also be done with fixed-point arithmetic.

2.2 Hardware
To run the software an ATmega128 processor is used. To achieve better quality, it is
highly recommended to use an active low-pass filter between the PWM output and
the loudspeaker/headphone/amplifier to filter out the PWM base frequency. The PWM
output and a suggested filter circuit has been described in Application Note AVR335.
The schematics for a simpler, second order active filter implemented with a single-
sided low-voltage operational amplifier is shown in Appendix C.

An STK500 development board with an STK501 expansion module is also
recommended. When decoding signals with an 8kHz sample rate the AVR must run
at 16 MHz and an external oscillator is required in such cases.

 AVR336

 7

2572A-AVR-11/04

3 Implementation Example
This section gives step-by-step instructions on how to decode compressed ADPCM
samples with an ATmega128 and the STK500/501 evaluation board. To decode an
ADPCM signal with 8kHz sample rate the system clock frequency needs to be
16MHz.

3.1 Quick Start
To use the ADPCM-decoder:

• Copy one of the included encoded sound samples to the source directory and
rename it to “data.c”.

• Start IAR Embedded Workbench, open the workspace file and configure the
workspace; Edit the BITS and INPUTSIZE parameters in “adpcm.h” according to
selected sound sample file (“data.c”) and rebuild the project.

• Download the compiled and linked program to the target AVR.
• Build and connect the output filter between the PWM output (PB5 on Atmega128)

and the loudspeaker.
The signal is now ready to be decoded and played back.

3.2 ADPCM Sound Files
Some encoded sound samples are included with this application note. Copy one of
the files to the source directory and rename it to “data.c”. Alternatively, use third-party
software to create new ADPCM sound files. If using custom ADPCM data please note
that the binary data must be copied into an array, as shown in the included sample
files. See Appendix E on how to encode ADPCM files.

3.3 Compile & Link
To compile and link the source code in IAR Embedded Workbench:

• Open workspace “AVR336.eww”.
• Set output format to UBROF-8 (Project -> Options -> XLINK -> Output -> UBROF-

8). IAR Embedded Workbench 3.10 generates UBROF 9 by default, but AVR
Studio 4.10 currently supports UBROF 8, and previous. This may change as new
releases are launched.

• In the project window, double-click on the file “adpcm.h” to open it. Update the
ADPCM settings in the file to match the format of the ADPCM sound file.
INPUTSIZE defines the length of the sound record and BITS defines the number of
bits used for encoding.

• In the project window, left-click on the file “data.c” and select Compile from the
pop-up menu. This is to make sure the compiler doesn’t use a precompiled version
of an old sound file.

• Compile and link the project (Project -> Make).

8 AVR336
2572A-AVR-11/04

3.4 Hardware Set-Up
Attach STK501 to STK500 and populate the top-module with an ATmega128.
Connect push buttons to port D using a flat cable (connect the cable between
SWITCHES and PORTD). Configure the target AVR to run at the desired frequency
(default is using a 16 MHz external crystal). Connect the AVR and/or STK500 to a PC
using direct cable connection or a choice of programmer/debugger.

3.5 Firmware Set-Up
Start AVR Studio and open the file “adpcm.dbg” from the IAR output directory
(“Debug/Exe” or “Release/Exe”). Configure AVR Studio for the debug platform and
AVR in use. The program is now ready to run.

3.6 Filter Circuit
The output filter circuit is not mandatory, but improves sound quality considerably.
One possible filter circuit is described in application note AVR335. If using the circuit
described in AVR335 please note that only the output part of the circuit is required;
there is no need for the microphone pre-amplifier. Alternatively, a simpler filter circuit
is shown in Appendix C.

4 Porting
The program can be ported to other AVR devices quite easily. Things that may need
to be changed include reference type for packed data memory and PWM output pin.
For example, to use the decoder on an ATmega32, replace all “__hugeflash” with
“__flash” in files “main.c”, “adpcm.c” and “data.c”. The PWM output, OC1A, of
ATmega32 is located on pin PD5 instead of PB5. Hence, the function
“initialize_pwm()“ in file “adpcm.c” must be changed accordingly.

It is recommended to use an AVR with integrated multiplier.

5 Performance
The amount of Flash memory required for a sound recording depends on the sample
rate, the ADPCM bit rate, and of course, the length of the recording. The table below
shows memory requirements for one second of sound at different bit rates and
sample rates.

Table 5-1. Flash Memory Required per One Second of Sound Data.
Sample rate (Hz)

Bits / Sample 4000 6000 8000

2 1,00 kB 1,50 kB 2,00 kB

3 1,50 kB 2,25 kB 3,00 kB

4 2,00 kB 3,00 kB 4,00 kB

5 2,50 kB 3,75 kB 5,00 kB

For example: a 10-second recording encoded with 4 bits and at a sample rate of 8
kHz requires 320 kilobits = 40 kilobytes (kB) of memory. This means that, for
example, an ATmega128 running the ADPCM decoder (about 3kB) can play back up
to (128-3) kB / (32/8) = more than 31 seconds of 8-kHz, 4-bit, ADPCM encoded data.

 AVR336

 9

2572A-AVR-11/04

5.1 Clock Cycles
The table below shows clock cycle requirements per one sample. The bit rate has
only a minimal effect on clock cycle requirements (the average values in the table are
from the 4-bit version). To find out the required clock frequency of the AVR, multiply
the total number of clock cycles by the sample rate.

Table 5-2. Average and Worst-Case Clock Cycle Requirements.
Function Average

Clock Cycles / Sample
Worst-case
Clock Cycles / Sample

get_code() 130 140

decode() 1600 1860

T/C3 ISR 60 70

Other 140 150

Decoder Loop Total 1930 2220

For example: the sound recording is sampled at 7812 Hz, and the average total clock
cycle requirement is 1930. The AVR needs to operate at 1930 x 7812 Hz = 15 MHz,
which rounds to 16 MHz with headroom. The worst-case clock cycle requirement
does exceed 16 MHz and therefore a small buffer is needed to prevent audible
distortions caused by calculations taking too long. The length of the buffer can be
adjusted (see source code). A long buffer reduces the risk of a buffer underrun but
requires more memory (two bytes per element).

5.2 Memory
The memory requirements are listed in the table below. The source code includes the
possibility to use all bit levels (2…5 bits), but in a typical application only one bit level
is needed. Removing the support for other bit levels will reduce the program memory
requirement.

Table 5-3. Memory Requirements (Excluding Sound Data).
Code Memory (bytes) Data Memory (bytes)
< 3000 (+ sound data) < 40 (+ output buffer)

10 AVR336
2572A-AVR-11/04

6 Appendix A: Tables
This appendix shows tables needed in 4-bit ADPCM decoding. Corresponding values
for other bit levels (2, 3, and 5) can be found directly from the source code
(“adpcm.c”). In the source code some table values are represented using fixed-point
decimal numbers. The number of bits reserved for the decimal part is indicated by Qn
notation. For example, using Q4 notation the number 4.75 is written in binary as
“0000 0000 0100.1100”.

Table 6-1. Function W() and F() Values for 4-bit Coding.
|I(k)| W|I(k)| (Q4 notation) F|I(k)| (Q9 notation)
0 -0.75 0

1 1.13 0

2 2.56 0

3 4.00 1

4 7.00 1

5 12.38 1

6 22.19 3

7 70.13 7

Table 6-2. Inverse Quantizing Table for 4-bit Coding.
|I(k)| |DQLN(k)| (Q7 notation)
0 -2048

1 4

2 135

3 213

4 273

5 323

6 373

7 425

 AVR336

 11

2572A-AVR-11/04

7 Appendix B: Formulas
This appendix shows the mathematical formulas used in decoding the ADPCM signal.
Headings refer to block names in Figure 1-2.

7.1 Inverse Adaptive Quantizer
To convert from logarithmic domain to linear, the following formula is used:

)()(ln2)(kykd
q

qkd +=

7.2 Quantizer Scale Factor Adaptation
Locked and unlocked scale factors are combined with the formula

)1())(1()1()()(−−+−= kykakykaky llul
where

1)(0 ≤≤ kal
The unlocked (fast) scale factor)(kyu (see tables in Appendix A for definitions of
function W values for different bit rates):

() () () ()kIWkykyu
55 221 −− +−=

The locked (slow) scale factor)(kyl :

() () ())(2121 66 kykyky ull
−− +−−=

)(kyu is limited between 1.06 and 10.00.

7.3 Adaptation Speed Control
The adaptation speed is controlled with parameter la . It approaches 1 with speech
signals and 0 with audio band data signals. The parameter is calculated by limiting
the speed control parameter)(ka p to be less than or exactly 1:

()
() ()⎩

⎨
⎧

≤−−
>−

=
11,1

11,1
)(

kaifka
kaif

ka
pp

p
l

Unlimited speed control parameter)(ka p is defined as:

()
()
()

()⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−
=

=+−−
<+−−

≥−+−−

=

−

−−

−−

−−−

elseka
ktif

ktifka
kyifka

kdkdkdifka

ka

p

r

dp

p

mlmlmsp

p

),1(21
1)(,1

1)(,2)1(21
3)(,2)1(21

)(2)()(,2)1(21

)(

4

34

34

334

12 AVR336
2572A-AVR-11/04

The following variables (short- and long-term averages of)(kIF) are needed in
calculation of pa :

())(2)1(21)(55 kIFkdkd msms
−− +−−=

())(2)1(21)(77 kIFkdkd mlml
−− +−−=

Values for)(kIF are fetched from static table (see Appendix A).

7.4 Tone And Transition Detector
Tone detection:

⎩
⎨
⎧ −<

=
else

kaif
td ,0

71875.0)(,1 2

Transition detection:

⎩
⎨
⎧ >−<−

=
−

else
kdandkaift

ky
q

r

l

,0
2*24)(71875.0)1(,1)1(

2

7.5 Adaptive Predictor
Signal estimate:

ezepe ssks +=)(

where

()∑
=

−−=
2

1
)(1

i
riep ikskas

and

∑
=

−−=
6

1
)()1(

j
qjez jkdkbs

A-coefficient updating:

))1(sgn())(sgn(*2*3)1()21()(8
1

8
1 −+−−= −− kpkpkaka

{ }))1(sgn())(sgn())1(())2(sgn())(sgn(*2

)1()21()(

1
7

2
7

2

−−−−

+−−=
−

−

kpkpkafkpkp

kaka

where

)()()(kskdkp ezq +=
,

⎩
⎨
⎧

>
≤

=
5.0),sgn(2

5.0,4
)(

11

11
1 aifa

aifa
af

Limitation:

() () ()kakaandka 2
4

12 2175.0 −−≤≤ −

 AVR336

 13

2572A-AVR-11/04

B-coefficient updating, when ADPCM-code is 2, 3, or 4-bit:

() () () ()[] ()[]ikdkdkbkb qqii −+−−= −− sgnsgn2121 78

B-coefficient updating, when ADPCM-code is 5-bit:

() () () ()[] ()[]ikdkdkbkb qqii −+−−= −− sgnsgn2121 79

If a transition is detected:

⎩
⎨
⎧

==
==

⇒=
6..1,0)(

2,1,0)(
0

ikb
ika

t
i

i
r

7.6 Reconstructed Signal Calculator
The reconstructed signal)(ksr is calculated by simply adding the signal estimate to
the difference signal:

)()()(kdksks qer +=

14 AVR336
2572A-AVR-11/04

8 Appendix C: Filter circuit
The filter illustrated in the figure below is a second-order, low-pass, Butterworth filter
with Sallen-Key topology. The cut-off frequency is at 3000 Hz. The PWM base
frequency, 31.25 kHz, is attenuated by about 40 dB. The filter is implemented using a
single-sided low-voltage operational amplifier TS921, which can be used with
operating voltages ranging from 2.7 to 12 V.

Figure 8-1. Filter Schematics.
C1

C3

C2

R2R1

RL

IC1

VCC

+

-

Gain and operating voltage Vcc may need adjustments depending on the load, RL. A
suitable operating voltage for this configuration is +5V.

Table 8-1. Filter Component Values.
Component Value Description
R1 1,69kΩ Butterworth filter resistor

R2 3,4kΩ Butterworth filter resistor

C1 0,022µF Butterworth filter capacitor

C2 0,022µF Butterworth filter capacitor

C3 1µF DC coupling capacitor

IC1 TS921 Operational amplifier

RL ≥ 32Ω (1) Miniature speaker, headphones, etc.
(1) Depends on IC1. See manufacturer’s datasheet.

 AVR336

 15

2572A-AVR-11/04

9 Appendix D: Files Included
This section lists the files distributed with the application note.

9.1 Decoder
The file “data.c” contains the encoded sound recording. To experiment with different
recordings, delete data.c, copy one of the files from the “Samples”-directory to the
source directory, rename it to “data.c” and change the BITS and INPUTSIZE
parameters from the file “adpcm.h” accordingly. Then compile and link the program.

Decoder files are located in the Source\Decoder directory.

Table 9-1. Decoder Files.
File Name Description
adpcm.c ADPCM algorithms

adpcm.h ADPCM header file

AVR336.eww IAR workspace/project file

data.c Encoded sound data file (see header for information)

Decoder.ewp IAR workspace/project file

main.c Main program

update_yl.asm ASM routine to update scale factor

9.2 Encoder
The encoder files are located in the Source\Tools directory.

Table 9-2. Encoder Files.
File Name Description
decode.c Source code for decoder

decode.exe Compiled decoder

encode.c Source code for encoder

encode.exe Compiled encoder

g7*.* Supporting source code files for encoder and decoder

c-izer.cpp Source code for text file to C code converter

c-izer.exe Compiled text file to C code converter

Portions of software based on code released to public domain by Sun Microsystem®,
Inc.

16 AVR336
2572A-AVR-11/04

9.3 Sound Samples
Sound samples are located in the Source\Samples directory.

Table 9-3. Sound Samples.
File Name Technical Details
Example_5bit.c ADPCM, 5-bit, 7.8kHz

Example_4bit.c ADPCM, 4-bit, 7.8kHz

Example_3bit.c ADPCM, 3-bit, 7.8kHz

Example_2bit.c ADPCM, 2-bit, 7.8kHz

 AVR336

 17

2572A-AVR-11/04

10 Appendix E: Generating ADPCM Files
An ADPCM encoder is needed to produce the packed files for the decoder described
in this application note. The decoder will decode data, which has ben packed with any
standard-compliant ADPCM encoder but in order to obtain highest possible quality it
is recommended to use a customised, non-standard encoder for generating the
ADPCM sound files. This is because the decoder doesn’t strictly follow the ITU-T
standard (see chapter Compliance with ITU-T G.726).

The operating principle of the encoder is briefly explained in “Theory of operation” –
chapter.

10.1 Using the Encoder
Included with this application note is a pre-compiled encoder, which can be run on a
PC with Windows® operating systems. The encoder is run from the command line
with the following parameters:

encode [-2|3|4|5] [-a|u|l] –i infile -o|c outfile

-2 Generate G.726 16kbps (2-bit) data

-3 Generate G.726 24kbps (3-bit) data

-4 Generate G.726 32kbps (4-bit) data [default]

-5 Generate G.726 40kbps (5-bit) data

-a Process 8-bit A-law input data

-u Process 8-bit u-law input data

-l Process 16-bit linear PCM input data [default]

-i Input filename (binary)

-o Output filename (binary)

-c Output filename (text file in format ready to be pasted into a
c-array)

For example: the following command line instructs the encoder to use 32kbps
ADPCM to encode a 16-bit linear PCM file called “sound1.bin” to a text file named
“encoded1.txt”:

encode –4 –l -i sound1.bin –c encoded1.txt

The output file contains a hex listing, as follows (hex data is only an example of what
the output may look like):

0xef, 0xc1, 0xff, 0xde, 0x7b, 0xff, 0xff, 0xff,

0xfe, 0xfb, 0xff, 0xff, 0xf7, 0xfe, 0x7f, 0xff,

...

18 AVR336
2572A-AVR-11/04

The text file must then be formatted into a valid *.c file, which can be used when
compiling the ADPCM decoder project. For this purpose, add lines shown in bold
below (hex data is still just an example):

#pragma memory = __hugeflash

char packed_ [] = {

0xef, 0xc1, 0xff, 0xde, 0x7b, 0xff, 0xff, 0xff,

0xfe, 0xfb, 0xff, 0xff, 0xf7, 0xfe, 0x7f, 0xff,

…

0x10, 0xf1, 0x45, 0x21, 0x44, 0x8c, 0xff, 0xff,

0xff

};

#pragma memory = default

char __hugeflash *packed = packed_;

Note that the command line encoder generates hex output files that end with a
comma. Make sure the array data does not end with a comma.

Save the file as data.c and copy it to the source directory of the ADPCM decoder.
Finally, count the number of elements in the array and use this number to configure
the INPUTSIZE parameter of file adpcm.h (see section “Implementation Example”).
Each full line of elements contains eight (8) characters of data. To quickly count the
total lines use a plain text editor that indicates on which line the cursor is when editing
and move the cursor from the first line to the last.

A small application named C-IZER is also included. It performs all necessary
operations described above for creating a valid C-file from the text file generated by
ENCODE. The application also returns the value for the INPUTSIZE parameter.

10.2 Using WAV-Files
WAV is a sound format developed by Microsoft® and used extensively in Microsoft
Windows®. Conversion tools are available to allow most other operating systems to
play WAV-files. The encoder included with this application note can be used to
convert WAV-files to ADPCM records, which can then be played back from the target
AVR.

In order to use WAV-files with the ADPCM encoder, the files should be saved as 16-
bit PCM in mono. The default settings of the decoder rely on a sampling frequency of
7.8 kHz.

WAV-files include a header, which the ADPCM encoder does not differentiate from
sound data. This means that the encoded sound file may start with a few bytes that
actually represent header data processed as sound samples. Typically, this is not
audible and the WAV-file header can usually be simply disregarded.

10.3 Compiling the Encoder
The encoder must be recompiled if it is to be used on other platforms than Windows®
PC. Source codes are included with the application note.

 AVR336

 19

2572A-AVR-11/04

11 References
1. Atmel Application Note AVR335: Digital Sound Recorder with AVR ® and

DataFlash ®.
http://www.atmel.com

2. ITU-T Recommendation G.726: 40, 32, 24, 16 kbit/s Adaptive Differential Pulse
Code Modulation (ADPCM).
http://www.itu.int

3. ANSI-C Implementations of CCITT G.711, G.721 and G.723 Voice Compressions
by Sun Microsystems, Inc.
ftp://ftp.cwi.nl/pub/audio/ccitt-adpcm.tar.gz

2572A-AVR-11/04

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET
FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY
WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of
the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

	AVR336: ADPCM Decoder
	Features
	Introduction
	Theory of Operation
	Inverse Adaptive Quantizer
	Quantizer Scale Factor Adaptation
	Adaptation Speed Control
	Tone and Transition Detector
	Adaptive Predictor
	Reconstructed Signal Calculator

	Implementation
	Software
	Compliance with ITU-T G.726

	Hardware

	Implementation Example
	Quick Start
	ADPCM Sound Files
	Compile & Link
	Hardware Set-Up
	Firmware Set-Up
	Filter Circuit

	Porting
	Performance
	Clock Cycles
	Memory

	Appendix A: Tables
	Appendix B: Formulas
	Inverse Adaptive Quantizer
	Quantizer Scale Factor Adaptation
	Adaptation Speed Control
	Tone And Transition Detector
	Adaptive Predictor
	Reconstructed Signal Calculator

	Appendix C: Filter circuit
	Appendix D: Files Included
	Decoder
	Encoder
	Sound Samples

	Appendix E: Generating ADPCM Files
	Using the Encoder
	Using WAV-Files
	Compiling the Encoder

	References
	Disclaimer

