
AVR914: CAN & UART based Bootloader for
AT90CAN32, AT90CAN64, & AT90CAN128

1. Features
• UART Protocol

– UART used as Physical Layer
– Based on the Intel Hex-type records
– Auto-baud

• CAN Protocol
– CAN used as Physical Layer
– 7 re-programmable ISP CAN identifiers
– Auto-bitrate

• In-System Programming
– Read/Write Flash and EEPROM memories
– Read Device ID
– Full chip Erase
– Read/Write configuration bytes
– Security setting from ISP command
– Remote application start command

2. Description
This document describes the UART & CAN bootloader functionality as well as the
serial protocols to efficiently perform operations on the on chip Flash & EEPROM
memories.

This bootloader implements the “In-System Programming” (ISP). The ISP allows the
user to program or re-program the microcontroller on-chip Flash & EEPROM memo-
ries without removing the device from the system and without the need of a pre-
programmed application.

The CAN & UART bootloader can manage a communication with an host through a
serial network or serial line. It can also access and perform requested operations on
the on-chip Flash & EEPROM memories.

3. Doc Control
Bootloader
Revision Purpose of Modifications Compiler

Version Date

Rev. 1.0.0 First release - 16/06/2003

Rev. 1.0.1
(7592A)

Updated for FLIP 2.4.4
Updated for AT90CAN128/64/32
Some bugs corrections

IAR Embedded
Workbench for Atmel

AVR 4.11A

19/10/2005

Rev. 1.0.1
(7592B)

Correction on
CAN ID_PROG_START answer 05/01/2006

7592B–AVR–01/06

8-bit
Microcontrollers

Application Note

2
7592B–AVR–01/06

CAN & UART based Bootloader

4. Bootloader Environment
The CAN & UART AT90CAN128/64/32 bootloader is loaded in the “Bootloader Flash Section”
of the on-chip Flash memory. The bootloader size is close to 8K bytes, so the physical “Boot-
loader Flash Section” is fully used. This section is reserved to the bootloader and the application
program size must be lower or equal the “Application Flash Section” (c.f. Table 4-1 ”Device Mem-
ory Mapping (byte addressing)” on page 2).

Table 4-1. Device Memory Mapping (byte addressing)

Note: The bootloader start address section depends on the fuse bits “BOOTSZ”.
Refer to the datasheet for more details on Flash memories (Flash, EEPROM, ...) behaviors.

4.1 Physical Environment
Bootloader deals with the host (or PC) through:

– A CAN interface
or

– An UART interface

Figure 4-1. Physical Environment

Memory AT90CAN128 AT90CAN64 AT90CAN32

FLASH
Size 128 K bytes 64 K bytes 32 K bytes

Add. Range 0x00000 - 0x1FFFF 0x00000 - 0x0FFFF 0x00000 - 0x07FFF

“Application Flash
Section”

Size 120 K bytes 56 K bytes 24 K bytes

Add. Range 0x00000 - 0x1DFFF 0x00000 - 0xDFFF 0x00000 - 0x05FFF

“Bootloader Flash
Section”

Size 8 K bytes

Add. Range 0x1E000 - 0x1FFFF 0x0E000 - 0x0FFFF 0x06000 - 0x07FFF

“Boot Reset Address” 0x1E000 0x0E000 0x06000

EEPROM
Size 4 K bytes 2 K bytes 1 K bytes

Add. Range 0x0000 - 0x0FFF 0x0000 - 0x07FF 0x0000 - 0x03FF

CAN

Generic

ISPUART
Auto-baud

Auto-bitrate

BOOT LOADER

Software Tool

or

3
7592B–AVR–01/06

CAN & UART based Bootloader

4.2 Bootloader Description

4.2.1 Overview

Figure 4-2. Bootloader Diagram

4.2.2 Entry Point
Only one “Entry Point” is available, it is the entry point to the bootloader. The “BOOTRST” fuse
of the device have to be set. After Reset, the “Program Counter” of the device is set to “Boot
Reset Address” (c.f. Table 4-1 ”Device Memory Mapping (byte addressing)” on page 2). This
“Entry Point” initializes the “boot process” of the bootloader.

D
riv

er
s

 U
AR

T

Entry Point

Boot
Process

Boot Appli

Protocol
Identification

UART CAN

UART Init.
(Auto-baud)

CAN Init.
(Auto-bitrate)

UART
Protocol

CAN
Protocol

ISP Command

Start
Application

Yes

No

ISP

Management

Command
Start Application

Fl
as

h
Li

br
ar

y

E
E

PR
O

M
Li

br
ar

y

IS
P

Li
br

ar
y

 C
om

m
an

ds

IN
TE

L

P
ro

to
co

l
 h

ex

P
ro

to
co

l
 C

A
N

Li
br

ar
y

 U
AR

T

D
riv

er
s

 C
A

N

Li
br

ar
y

 C
A

N

Fl
as

h
D

riv
er

s

E
E

PR
O

M
D

riv
er

s

4
7592B–AVR–01/06

CAN & UART based Bootloader

4.2.3 Boot Process
The “boot process” of the bootloader allows to start the application or the bootloader itself. This
depends on two variables:

• The “Hardware Condition”.
The Hardware Condition is defined by a device input PIN and its activation level (Ex:
INT0/PIND.0, active low). This is set in “config.h” file.

• The “Boot Status Byte”.
The Boot Status Byte “BSB” belongs to the “Bootloader Configuration Memory” (c.f. Section
5.4.4.1 ”Boot Status Byte - “BSB”” on page 9). Its default value is 0xFF. An ISP command
allows to change its value.

Figure 4-3. Boot Process Diagram

4.2.4 Protocol Identification

The “Protocol Identification“ of the bootloader select what protocol to use, CAN or UART proto-
col. A polling of the physical lines is done to detect an activity on the media. These lines are:

• PORT_CAN_RX: The polling is be done on RXCAN/PIND.6.
• PORT_UART_RX: Depends on the definition set in “config.h” file.

– If “USE_UART1” is defined, the polling is be done on RxD0/PINE.0.
– If “USE_UART2” is defined, the polling is be done on RxD1/PIND.2.

The first low level on one of these lines starts the initialization of the corresponding peripheral.

Figure 4-4. Protocol Identification Diagram

RESET

PC= Boot Reset Address

Hardware
Condition

False True

BSB=0xFF BSB=0xFF

Start BOOT LOADER Start APPLICATION

Yes

NoNo

Yes

Protocol Identification PORT_UART_RX
Low Level

No

Yes

PORT_CAN_RX
Low Level

UART Initialization CAN Initialization

No

Yes

5
7592B–AVR–01/06

CAN & UART based Bootloader
4.2.5 CAN Initialization

The CAN, used to communicate with the host, has the following configuration:

– Standard: CAN format 2.0A (11-bit identifier).
– Frame: Data frame.
– Bitrate: Depends on Extra Byte - “EB” (see “Extra Byte - “EB”” on page 10):

- “EB” = 0xFFH: Use the software auto-bitrate.
- “EB” != 0xFFH: Use CANBT[1..3] bytes to set the CAN bitrate

(see “CANBT[1..3] - “BTC[1..3]“,” on page 10).
The initialization process must be performed after each device Reset. The host initiates the com-
munication by sending a data frame to select a node. In case of auto-bitrate, this will help the
bootloader to find the CAN bitrate. The CAN standard says that a frame having an acknowledge
error is re-sent automatically. This feature and the capability of the CAN peripheral to be set in
“LISTEN” mode are used by the auto-bitrate. Once the synchronization frame is received without
any error, a recessive level is applied on the acknowledge slot by releasing the “LISTEN” mode.

The software auto-bitrate supports a wide range of baud rates according with the system clock
(CKIO) set on the device (c.f. “FOSC“ definition in “config.h “ file). This functionality is not guaran-
teed on a CAN network with several CAN nodes.

4.2.6 UART Initialization
The defined UART, used to communicate with the host, has the following configuration:

– Character: 8-bit of data.
– Parity: none.
– Stop: 1 bit.
– Flow Control: none.
– Baud rate: an auto-baud is performed to find the baud rate chosen by the host.

The initialization process must be performed after each device Reset. The host initiates the com-
munication by sending a “U” character (0x55) as synchronization character to help the
bootloader to find the baud rate (auto-baud). Only one synchronization character is sent and at
the end of this character the bootloader must have its UART initialization done.
The bootloader supports a wide range of baud rates according with the system clock (CKIO) set
on the device (c.f. “FOSC“ definition in “config.h “ file).

Figure 4-5. UART Synchronization

4.2.7 CAN or UART Protocols Overview
The “CAN or UART Protocols” are higher level protocols over serial line.

“U”

Host Bootloader

"U"

Exit Host UART Protocol

"U"

Performs
Auto-baud

Send back
character

Init
communication

Yes

No
received ?

6
7592B–AVR–01/06

CAN & UART based Bootloader

They are described in specific paragraphs in this document (See “CAN Protocol & ISP Com-
mands” on page 12. & see “UART Protocol & ISP Commands” on page 19).

4.2.8 ISP Commands Overview
Each of “CAN or UART Protocols” decodes ”ISP commands”. The set of ”ISP commands” obvi-
ously is independent of both protocols.

It is described in a specific paragraph in this document (See “CAN Protocol & ISP Commands”
on page 12. & see “UART Protocol & ISP Commands” on page 19).

4.2.9 Output From Bootloader
The output from the bootloader is performs after receiving the ISP command: “Start Application“
((See “CAN Protocol & ISP Commands” on page 12. & see “UART Protocol & ISP Commands”
on page 19).

5. Memory Space Definition
The bootloader supports up to five separate memory spaces. Each of them receives a code
number (value to report in the corresponding protocol field) because low level access protocols
(drivers) can be different.

The access to memory spaces is a byte access (i.e. the given addresses are byte addresses).

Table 5-1. Memory Space Code Numbers

Note: 1. Sometimes, the discriminating is not physical (ex: “Signature” is a sub-set of the code of the
bootloader Flash Section” as well as “Bootloader Information”).

2. Not yet implemented.

5.1 Flash Memory Space
The Flash memory space managed by the bootloader is a sub-set of the device Flash. It is the
“Application Flash Section”.

Table 5-2. Flash Memory Space (Code Number 0)

Note: 1. Page parameter is different in the bootloader and in the device itself.

Space (1) Code Number Access
Flash Memory (default) 0 Read & Write

EEPROM Data Memory 1 Read & Write

- 2 -

Bootloader Information 3 Read only

Bootloader Configuration 4 Read & Write

Device registers (2) 5 Read only

Signature 6 Read only

Flash Memory Space AT90CAN128 AT90CAN64 AT90CAN32
Size 120 K bytes 56 K bytes 24 K bytes

Address Range 0x00000 - 0x1DFFF 0x00000 - 0xDFFF 0x00000 - 0x05FFF

Number of page(s)(1) 2 1 1

7
7592B–AVR–01/06

CAN & UART based Bootloader
5.1.1 Reading or Programming

The “ISP Read” or “ISP Program” commands only access to Flash memory space in byte
addressing mode into a page of 64K bytes (c.f. Table 5-2 ”Flash Memory Space (Code Number
0)” on page 6). Specific ISP commands allows to select the different pages.

The bootloader will return a “Device protection” error if the Software Security Byte “SSB” is set
while read or write command occurs (c.f. Section 5.4.4.2 ”Software Security Byte - “SSB”” on
page 9).

5.1.2 Erasing
The “ISP Erase” command is a full erase (all bytes=0xFF) of the Flash memory space. This
operation is available whatever the Software Security Byte “SSB” setting. A the end of the opera-
tion, the Software Security Byte “SSB” is reset to level 0 of security (Section 5.4.4.2 ”Software
Security Byte - “SSB”” on page 9).

5.1.3 Limits
The ISP commands on the Flash memory space has no effect on the bootloader (no effect on
“Bootloader Flash Section”).

The sizes of the Flash memory space (code number 0) for ISP commands are given in Table 5-
2 ”Flash Memory Space (Code Number 0)” on page 6.

5.2 EEPROM Data Memory
The EEPROM data memory space managed by the bootloader is the device EEPROM.

Table 5-3. EEPROM Data Memory Space (Code Number 1)

5.2.1 Reading or Programming
The EEPROM data memory space is used as non-volatile data memory. The “ISP Read” or “ISP
Program” commands access byte by byte to this space (no paging).
The bootloader will return a “Device protection” error if the Software Security Byte “SSB” is set
while read or write command occurs (c.f. Section 5.4.4.2 ”Software Security Byte - “SSB”” on
page 9).

5.2.2 Erasing
The “ISP Erase” command is a full erase (all bytes=0xFF) of the EEPROM Data Memory space.
This operation is available whatever only if the Software Security Byte “SSB” is reset (Section
5.4.4.2 ”Software Security Byte - “SSB”” on page 9).

5.2.3 Limits
The sizes of the EEPROM Data Memory space (code number 1) for ISP commands are given in
Table 5-3 ”EEPROM Data Memory Space (Code Number 1)” on page 7.

EEPROM Data Memory Space AT90CAN128 AT90CAN64 AT90CAN32
Size 4 K bytes 2 K bytes 1 K bytes

Address Range 0x0000 - 0x0FFF 0x0000 - 0x07FF 0x0000 - 0x03FF

Number of page(s) -- No paging --

8
7592B–AVR–01/06

CAN & UART based Bootloader

5.3 Bootloader Information
The Boot loader information space managed by the bootloader is included the code of the boot-
loader. It is in the “Bootloader Flash Section”.

Table 5-4. Bootloader Information Space (Code Number 3)

5.3.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).
No access protection is provided on this read only space.

5.3.2 Erasing
Not applicable for this read only space.

5.3.3 Limits
Details on the Boot loader information space (code number 3) for ISP commands are given in
Table 5-4 ”Bootloader Information Space (Code Number 3)” on page 8.

5.3.4 Bootloader Information Byte Description

5.3.4.1 Boot Revision
Boot Revision: Read only address =0x00, value ≥ 0x01.

5.3.4.2 Boot ID1 & ID2
Boot ID1 & ID2: Read only addresses = 0x01 & 0x02, value = 0xD1 & 0xD2.

5.4 Bootloader Configuration
The Boot loader configuration space managed by the bootloader is included in the “Bootloader
Flash Section”.

Table 5-5. Bootloader Configuration Space (Code Number 4)

Note: 1. See “Extra Byte - “EB”” on page 10. for validity.

Signature Space AT90CAN128 AT90CAN64 AT90CAN32
Bootloader Revision Address: 0x00 (Read only) ≥ 0x01

Boot ID1 Address: 0x01 (Read only) 0xD1

Boot ID2 Address: 0x02 (Read only) 0xD2

Number of page(s) -- No paging --

Signature Space AT90CAN128 AT90CAN64 AT90CAN32
Boot Status Byte “BSB” Add.: 0x00 (default value=0xFF)

Software Security Byte “SSB” Add.: 0x05 (default value=0xFF)

Extra Byte “EB” Add.: 0x06 (default value=0xFF) (1)

CANBT1 “BTC1” Add.: 0x1C (default value=0xFF) (2)

CANBT2 “BTC2” Add.: 0x1D (default value=0xFF) (2)

CANBT3 “BTC3” Add.: 0x1E (default value=0xFF) (2)

Node Number “NNB” Add.: 0x1F (default value=0xFF) (3)

CAN Re-locatable ID Segment “CRIS” Add.: 0x20 (default value=0xFF)

Number of page(s) -- No paging --

9
7592B–AVR–01/06

CAN & UART based Bootloader
2. See “CANBT[1..3] - “BTC[1..3]“,” on page 10. for validity.
3. See “(CAN) Node Number - “NNB”” on page 10. for validity.

5.4.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).

Access protection is only provided on the Software Security Byte (c.f. Section 5.4.4.2 ”Software
Security Byte - “SSB”” on page 9).

5.4.2 Erasing
The “ISP Erase” command is not available for this space.

5.4.3 Limits
Details on the Boot loader configuration space (code number 6) for ISP commands are given in
Table 5-5 ”Bootloader Configuration Space (Code Number 4)” on page 8.

5.4.4 Bootloader Configuration Byte Description

5.4.4.1 Boot Status Byte - “BSB”
The Boot Status Byte of the bootloader is used in the “boot process” (Section 4.2.3 ”Boot Pro-
cess” on page 4) to control the starting of the application or the bootloader. If no Hardware
Condition is set, the default value (0xFF) of the Boot Status Byte will force the bootloader to
start. Else (Boot Status Byte != 0xFF & no Hardware Condition) the application will start.

5.4.4.2 Software Security Byte - “SSB”
The bootloader has the Software Security Byte “SSB” to protect itself and the application from
user access or ISP access. It protects the Flash and EEPROM memory spaces and itself.

The “ISP Program” command on Software Security Byte “SSB” can only write an higher priority
level. There are three levels of security:

Table 5-6. Security levels

The table below gives the authorized actions regarding the SSB level.

Level Security “SSB” Comment

0 NO_SECURITY 0xFF
- This is the default level.
- Only level 1 or level 2 can be written over level 0.

1 WR_SECURITY 0xFE

- In level 1, it is impossible to write in the Flash and
EEPROM memory spaces.

- The bootloader returns an error message.
- Only level 2 can be written over level 0.

2 RD_WR_SECURITY ≤ 0xFC

- All read and write accesses to/from the Flash and
EEPROM memory spaces are not allowed.

- The bootloader returns an error message.
- Only an “ISP Erase” command on the Flash memory

space resets (level 0) the Software Security Byte.

10
7592B–AVR–01/06

CAN & UART based Bootloader

Table 5-7. Allowed actions regarding the Software Security Byte “SSB”

5.4.4.3 Extra Byte - “EB”
The Extra Byte is used to switch the CAN Initialization to auto-bitrate or to fixed CAN bit timing.

– “EB” = 0xFFH: Use the software auto-bitrate.
– “EB” != 0xFFH: Use CANBT[1..3] bytes of Boot loader configuration space to set the

CAN bit timing registers of the CAN peripheral (no auto-bitrate).
Note: Not yet exploited. This will be done in a future bootloader version.

5.4.4.4 CANBT[1..3] - “BTC[1..3]“,
When “EB” != 0xFFH, CANBT[1..3] bytes of Boot loader configuration space are used to set the
CAN bit timing registers of the CAN peripheral.(no auto-bitrate).
An other way to write these byte is described in Section 5.5.4.1 ”CANBT[1..3] Registers.” on
page 11.

Note: Not yet exploited. This will be done in a future bootloader version.

5.4.4.5 (CAN) Node Number - “NNB”
See “CAN Protocol & ISP Commands” on page 12.

Note: Not yet exploited. This will be done in a future bootloader version.

5.4.4.6 CAN Re-locatable ID Segment - “CRIS”
See “CAN Protocol & ISP Commands” on page 12.

5.5 Device Registers
The device registers space managed by the bootloader is the 64 I/O registers and the 160 Ext.
I/O registers of the device. They are accessed by the equivalent assembler instruction:

LDS Rxx, REG_ADD
where REG_ADD is in the address range 0x20 (PINA) up to 0xFA (CANMSG).

ISP Command NO_SECURITY WR_SECURITY RD_WR_SECURITY
Erase Flash memory space Allow Allow Allow

Erase EEPROM memory space Allow - -

Write Flash memory space Allow - -

Write EEPROM memory space Allow - -

Read Flash memory space Allow Allow -

Read EEPROM memory space Allow Allow -

Write byte(s) in Boot loader
configuration (except for “SSB”) Allow - -

Read byte(s) in Boot loader
configuration Allow Allow Allow

Write “SSB” Allow only a higher level -

Read Boot loader information Allow Allow Allow

Read Signature Allow Allow Allow

Blank check (any memory) Allow Allow Allow

Changing of memory space Allow Allow Allow

11
7592B–AVR–01/06

CAN & UART based Bootloader
5.5.1 Reading or Programming

The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

5.5.2 Erasing
Not applicable for this read only space.

5.5.3 Limits
This space is not bit addressing and an unimplemented register returns 0xFF.

5.5.4 Device Registers Description
c.f. appropriate data sheet for information.

5.5.4.1 CANBT[1..3] Registers.
If they are read before to disable the auto-bitrate (when “EB” = 0xFFH), in the same time they
they are copied into “BTC1”, “BTC2” & “BTC3” of the Boot loader configuration space (see
“CANBT[1..3] - “BTC[1..3]“,” on page 10).

Note: Not yet exploited. This will be done in a future bootloader version.

5.6 Signature
The Signature space managed by the bootloader is included the code of the bootloader. It is in
the “Bootloader Flash Section”.

Table 5-8. Signature Space (Code Number 6)

5.6.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

5.6.2 Erasing
Not applicable for read only space.

5.6.3 Limits
Details on the Signature space (code number 6) for ISP commands are given in Table 5-8 ”Sig-
nature Space (Code Number 6)” on page 11.

Signature Space AT90CAN128 AT90CAN64 AT90CAN32
Manufacturer Code Address: 0x30 (Read only) 0x1E

Family Code Address: 0x31 (Read only) 0x81

Product Name Address: 0x60 (Read only) 0x97 0x96 0x95

Product Revision Address: 0x61 (Read only) ≥ 0x00 ≥ 0x00 ≥ 0x00

Number of page(s) -- No paging --

12
7592B–AVR–01/06

CAN & UART based Bootloader

6. CAN Protocol & ISP Commands
This section describes the higher level protocol over the CAN network communication and the
coding of the associated ISP commands.

6.1 CAN Frame Description
The CAN protocol only supports the CAN standard frame (c.f. ISO 11898 for high speed and
ISO 11519-2 for low speed) also known as CAN 2.0 A with 11-bit identifier.

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is fol-
lowed by the "Arbitration field" which consist of the identifier and the "Remote Transmission
Request (RTR)" bit used to distinguish between the data frame and the data request frame
called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit
and the "Data Length Code (DLC)" used to indicate the number of following data bytes in the
"Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data
field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK
slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as
a dominant bit by the receivers which have at this time received the data correctly.

The ISP CAN protocol only uses CAN standard data frame.

Figure 6-1. CAN Standard Data Frame

To describe the ISP CAN protocol, a symbolic name is used for Identifier, but default values are
given within the following presentation.

Table 6-1. Template for ISP CAN command

Because in a point-to-point connection, the transmit CAN message is repeated until a hardware
acknowledge is done by the receiver.

The bootloader can acknowledge an incoming CAN frame only if a configuration is found.

This functionality is not guaranteed on a network with several CAN nodes.

Identifier
11 bits

Length
4 bits

Data[0]
1 byte

... Data[n-1]
1 byte

Description

SYMBOLIC_NAME
(“CRIS”<<4) + x n (≤8) Value or meaning Command description

13
7592B–AVR–01/06

CAN & UART based Bootloader

6.2 CAN ISP Command Data Stream Protocol

6.2.1 CAN ISP Command Description
Several CAN message identifiers are defined to manage this protocol.

Table 6-2. Defined CAN Message Identifiers for CAN ISP Protocol

It is possible to allocate a new value for CAN ISP identifiers by writing the “CRIS” byte with the
base value for the group of identifier.

The maximum “CRIS” value is 0x7F and its the default value is 0x00.

Figure 6-2. Remapping of CAN Message Identifiers for CAN ISP Protocol

6.2.2 Communication Initialization
The communication with a device (CAN node) must be opened prior to initiate any ISP commu-
nication. To open communication with the device, the Host sends a “Connecting” CAN message
(“ID_SELECT_NODE”) with the node number “NNB” passed as parameter. If the node number

Identifier ISP Command Detail Value

ID_SELECT_NODE Open/Close a communication with a node (“CRIS” << 4) + 0

ID_PROG_START Start Memory space programming (“CRIS” << 4) + 1

ID_PROG_DATA Data for Memory space programming (“CRIS” << 4) + 2

ID_DISPLAY_DATA Read data from Memory space (“CRIS” << 4) + 3

ID_START_APPLI Start application (“CRIS” << 4) + 4

ID_SELECT_MEM_PAGE Selection of Memory space or page
(“CRIS” << 4) + 6

ID_ERROR Error message from bootloader only

CAN Identifiers

0x000

0x7FF
CAN ISP Identifiers

(“CRIS”<<4)+ 0

ID_SELECT_NODE

ID_PROG_START

ID_PROG_DATA

ID_DISPLAY_DATA

ID_WRITE_COMMAND

ID_SELECT_MEM_PAGE

Group of 6
CAN Mes-

sages Used
to Manage
CAN ISP

Commands

ID_ERROR

14
7592B–AVR–01/06

CAN & UART based Bootloader

passed is 0xFF then the CAN bootloader accepts the communication (Figure 6-3). Otherwise the
node number passed in parameter must be equal to the local “NNB” (Figure 6-4).

Figure 6-3. CAN Bootloader First Connection

Figure 6-4. CAN Bootloader Network Connection

Before opening a new communication with another device, the current device communication
must be closed with its connecting CAN message (“ID_SELECT_NODE”).

Host

Node

“NNB”=0xFF (Default Value)

Interface Between
PC & CAN Network

In Situ Programming - ISP

Host

Node: 0

“NNB”=0x00

Interface Between
PC & CAN Network

Node: 1

“NNB”=0x01

Node: 2

“NNB”=0x02

Node: n

“NNB”=0xnn

In Application Programming - IAP

15
7592B–AVR–01/06

CAN & UART based Bootloader

6.3 CAN ISP Commands

6.3.1 CAN Node Select
A CAN node must be first opened at the beginning and then closed at the end of the session.

6.3.1.1 CAN Node Select Requests from Host

Table 6-3. CAN Node Select Requests from Host

6.3.1.2 CAN Node Select Answers from Bootloader

Table 6-4. CAN Node Select Answers from Bootloader

6.3.2 Changing Memory / Page
To change of memory space and/or of page, there is only one command, the switch is made by
“Data[0]” of the CAN frame.

6.3.2.1 Changing Memory / Page Requests from Host

Table 6-5. Changing Memory / Page Requests from Host

6.3.2.2 Changing Memory / Page Answers from Bootloader

Table 6-6. Changing Memory / Page Answers from Bootloader

6.3.3 Reading / Blank Checking Memory
These operations can be executed only with a device previously open in communication. This
command is available on the memory space and on the page previously defined.

Identifier L Data[0] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 1 Node Number (“NNB”) Open or close communication with a specific node

Identifier L Data[0] Data[1] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 2 “Bootloader

Revision”

0x00 Communication closed

0x01 Communication opened

Identifier L Data[0] Data[1] Data[2] Description

ID_SELECT_MEM_PAGE
((“CRIS”<<4)+ 6) 3

0x00

Memory
space Page

No action

0x01 Select Memory space

0x02 Select Page

0x03 Select Memory space & Page

Identifier L Data[0] Description

ID_SELECT_MEM_PAGE
((“CRIS”<<4)+ 6) 1 0x00 Selection OK (even if “Data[0]”=0 in the request frame)

16
7592B–AVR–01/06

CAN & UART based Bootloader

To start the reading or blank checking operation, the Host sends a CAN message
(“ID_DISPLAY_DATA”) with the operation required in Data[0], the start address and end
address are passed as parameters.

6.3.3.1 Reading / Blank Checking Memory Requests from Host

Table 6-7. Reading / Blank Checking Memory Requests from Host

6.3.3.2 Reading / Blank Checking Memory Answers from Bootloader

Table 6-8. Reading / Blank Checking Memory Answers from Bootloader

6.3.4 Programming / Erasing Memory
These operations can be executed only with a device previously open in communication. They
need two steps:

• The first step is to indicate address range for program or erase command.
• The second step is to transmit the data for programming only.

To start the programming operation, the Host sends a “start programming” CAN message
(ID_PROG_START) with the operation required in “Data[0]”, the start address and the end
address are passed as parameters.

6.3.4.1 Programming / Erasing Memory Requests from Host

Table 6-9. Unit. Programming / Erasing Memory Requests from Host

Identifier L Data[0] Data[1] Data[2] Data[3] Data[4] Description

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3) 5

0x00
Start Address
(MSB, LSB)

End Address
(MSB, LSB)

Display data of selected
Memory space / Page

0x80 Blank check on
selected Memory space / Page

Identifier L Data[0] Data[1] ... Data[7] Description

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3)

up to 8 Up to 8 Data Bytes Data Read

0 - - - - Blank check OK

2 First not blank address - - Error on Blank check

ID_ERROR
((“CRIS”<<4)+ 6) 1 0x00 - - -

Error
Software Security Set
(“Display data” only)

Identifier L Data[0] Data[1] Data[2] Data[3] Data[4] Data[5..7] Description

ID_PROG_START
((“CRIS”<<4)+ 1)

5 0x00 Start Address
(MSB, LSB)

End Address
(MSB, LSB) - Init. prog. the selected

Memory space / Page

3 0x80 0xFF 0xFF - - - Erase the selected
Memory space / Page

ID_PROG_DATA
((“CRIS”<<4)+ 2) n data[0..(n-1)] (n≤8) Data to program

17
7592B–AVR–01/06

CAN & UART based Bootloader
6.3.4.2 Programming / Erasing Memory Answers from Bootloader

Table 6-10. Programming / Erasing Memory Answers from Bootloader

6.3.4.3 Programming Memory Examples

Table 6-11. Programming Memory Examples

Figure 6-5. Result of the Above Programming Memory Example (1)

Note: 1. AVR Studio Program Memory representation

Identifier L Data[0] Description

ID_PROG_START
((“CRIS”<<4)+ 1)

0 - Init. prog. command OK

1 0x00 Erase done

ID_PROG_DATA
((“CRIS”<<4)+ 2) 1

0x00 Command OK and end of transfer

0x02 Command OK but new (other) data expected

ID_ERROR
((“CRIS”<<4)+ 6) 1 0x00 Error - Software Security Set (“Init. program” only)

Request/
Answer

CAN Message (hexadecimal)
Description

Identifier L Data[..70]

R (>>) 000 1 FF CAN Node Select

A (<<) 000 2 01 01 Communication opened

Default Memory space = Flash, default Page = page_0

R (>>) 001 5 00 00 02 00 12 Init. Prog. Add 0x0002 up to 0x0012

A (<<) 001 0 00 Init. prog. command OK

R (>>) 002 8 01 02 03 04 05 06 07 08 1st Data transfer

A (<<) 002 1 02 Command OK, new data expected

R (>>) 002 8 11 12 13 14 15 16 17 18 2nd Data transfer

A (<<) 002 1 02 Command OK, new data expected

R (>>) 002 1 20 3rd Data transfer

A (<<) 002 1 00 Command OK, end of transfer

18
7592B–AVR–01/06

CAN & UART based Bootloader

6.3.5 Starting Application
This operation can be executed only with a device previously open in communication.

To start the application, the host sends a start application CAN message with the “way of”
selected in “Data[1]”. The application can be start by a watchdog reset or by jumping to address
0x0000 in the Flash memory.

No answer is returned by the bootloader.

Table 6-12. Start application Requests from Host

Identifier L Data[0] Data[1] Data[2] Data[3] Description

ID_START_APPLI
((“CRIS”<<4)+ 4)

2
0x03

0x00 - - Start application with watchdog reset

4 0x80 0x00 0x00 Jump to address 0x0000

19
7592B–AVR–01/06

CAN & UART based Bootloader

7. UART Protocol & ISP Commands
This section describes the higher level protocol over the UART serial line and the coding of the
associated ISP commands.

7.1 UART Frame Description
The UART Protocol is based on the Intel Extended Hex-type records.
Each record begins with a RECORD MARK field containing 03AH, the ASCII code for the colon
(’ : ’) character. Each record has a RECORD LENGTH field which specifies the number of bytes
of data or information which follows the RECORD TYPE field of the record. Note that one data
byte is represented by two ASCII characters. The maximum value of the RECORD LENGTH
field is 0xFF’ or 255.

Table 7-1. Intel Hex Type Frame

• RECORD MARK (1 ASCCI byte)
This field contains 0x03, the hexadecimal encoding of the ASCII colon (’ : ’) character.

• RECORD LENGTH (1 byte once ASCII decoded)
This field specifies the number of bytes of DATA/INFORMATION field which follows the
RECORD TYPE field.

• OFFSET (2 bytes once ASCII decoded)
Each record has an OFFSET field which specifies the 16-bit starting load offset of the data
bytes, therefore this field is only used for Data Records. In other records where this field is
not used, it should be coded as four ASCII zero characters (’0000’ or 0x030303030).

• RECORD TYPE (1 byte once ASCII decoded)
Each record has a RECORD TYPE field which specifies the record type of this record. The
RECORD TYPE field is used to interpret the remaining information within the record.

• DATA / INFORMATION (n byte(s) once ASCII decoded)
Each record has a variable (RECORD LENGTH) length DATA/INFORMATION field. It
consists of zero or more bytes encoded as pairs of hexadecimal digits. The meaning of
data depends on the RECORD TYPE.

• CHECKSUM (1 byte once ASCII decoded)
This field contains the checksum (two’s complement) on the RECORD LENGTH,
OFFSET, RECORD TYPE and DATA/INFORMATION fields ASCII decoded.

RECORD
MARK ‘:’

RECORD
LENGTH OFFSET RECORD

TYPE DATA / INFORMATION CHECKSUM

1 byte 1 byte 2 bytes 1 byte n byte(s) 1 byte

Example:

:10E24C00121729F413950BD0DBCF3395FCCF239504

CHECKSUM
DATA / INFORMATION
RECORD TYPE
OFFSET
RECORD LENGTH
RECORD MARK

20
7592B–AVR–01/06

CAN & UART based Bootloader

7.2 UART ISP Command Data Stream Protocol
All ISP commands are sent using the same flow. Each frame sent by the host first must be ech-
oed by the bootloader.
Each command flow may end with:

• “X” : If checksum error
• “L” : If read security is set
• “P”: If program security is set
• “.”: If command OK (or byte + “.”: If read byte OK)

Figure 7-1. Command Flow Summary

7.3 UART ISP Commands

7.3.1 Changing Memory / Page
To change of memory space and/or of page, there are two commands.

• Select Memory: To select the memory space and the page in this memory space.
• Select New Page: To change the page in the memory space already selected.

Send

No

data ?
Yes

“:”

Bootloader

":"

":"

Send
RECORD MARK

Echo “:” character
& start reception

Yes

Noreceived ?

Host

Send the
remainder of the frame

"xyz"

"xyz"
Echo analysis

Get the remainder of the frame

Echo of each character

"Ack"Acknowledgement
Send acknowledgement

No Ack Error Ack

Time out OK
Error

Error
Continue

"010203..."
Buffering data

analysis

21
7592B–AVR–01/06

CAN & UART based Bootloader
7.3.1.1 Changing Memory / Page Requests from Host

Table 7-2. Changing Memory / Page Requests from Host

7.3.1.2 Changing Memory / Page Answers from Bootloader

Table 7-3. Changing Memory / Page Answers from Bootloader

7.3.1.3 Changing Memory / Page Examples

Table 7-4. Changing Memory / Page Examples

Note: 1. Because the page size is 64K bytes, the physical address is 0x012345.

7.3.2 Reading / Blank Checking Memory
• The “ISP Read Memory” command allows to read an address range of a memory space.
• The “ISP Blank Check Memory” command allows to blank check an address range of a

memory space.
The two commands are available on the memory space and on the page previously defined.

7.3.2.1 Reading / Blank Checking Memory Requests from Host

Table 7-5. Reading / Blank Checking Memory Requests from Host

ISP Command
Request (R)

RECORD
LENGTH

OFFSET RECORD
TYPE DATA[0] DATA[1]

Select New Page “:” 0x02 Start Address 0x02 - [7..4] =Page
- [3..0]=0x0 0x00

Select Memory “:” 0x02 0x0000 0x04
Memory Space
Code Number

Page

Answer (A) Character[0] Character[1] Character[2]
Command Done “.” “CR” “LF”

Wrong Checksum “X” “CR” “LF”

ISP Command R/A Frame Comment

Select Memory
R >> ”:020000040100F9” Select EEPROM, Page 0

A << ”:020000040100F9.CRLF” Command Done

Select New Page
R >> ”:02234502100084” Select Page 1, Add. 0x2345

A << ”:02234502100084.CRLF” Command Done

Select Memory
R >> ”:020000040001F8” Select Flash, Page 1

A << ”:020000040000F8XCRLF” Checksum error

ISP Command
Request (R)

RECORD
LENGTH

OFFSET RECORD
TYPE

DATA[0,1]
2 bytes

DATA[2,3]
2 bytes

DATA[4]

Read Memory “:” 0x05 0x0000 0x04 Start Address End Address 0x00
Blank Check Memory “:” 0x05 0x0000 0x04 Start Address End Address 0x01

22
7592B–AVR–01/06

CAN & UART based Bootloader

7.3.2.2 Reading / Blank Checking Memory Answers from Bootloader

Table 7-6. Reading / Blank Checking Memory Answers from Bootloader

7.3.2.3 Reading / Blank Checking Memory Examples

Table 7-7. Reading / Blank Checking Memory Examples

7.3.3 Programming / Erasing Memory
• The “ISP Program Memory” command allows to program an address range of a memory

space. This command is available on the memory space and on the page previously defined.
• The “ISP Erase Memory” command allows to (full) erase a memory space. This command is

available on the memory space previously defined.

Answer (A) Character[0..n]
Read Memory Command Done Address = data (16-byte formatted) + “CR” + “LF”

Answer (A) Character[0] Character[1] Character[2] Character[3]
Blank Check Memory OK “.” “CR” “LF” -

Blank Check Memory Error First Failed Address “CR” “LF”

Wrong Checksum “X” “CR” “LF” -
Error - Software Security Set
(“ISP Read Memory” only) “L” “CR” “LF” -

ISP Command R/A Frame Comment

Read Memory

R >> ”:050000040003001500DF” Read the selected memory & page
from Add. 0x0003 up to 0x0015

A
<< ”:050000040003001500DFCRLF”
<< ”0003=030405 0F101112CRLF”
<< ”0013=131415CRLF”

Read data &
command done

Blank Check
Memory

R >> ”:050000040000010001F5”
Blank check the selected memory &
page from Add. 0x0000 up to
0x0100

A << ”:050000040000010001F5.CRLF” Blank Check Memory OK

Read Memory
R >> ”:050000040010001100D6” Read the selected memory & page

from Add. 0x0010 up to 0x0011

A << ”:050000040010001100D6LCRLF” Security Set, read aborted

Blank Check
Memory

R >> ”:05000004600060020134”
Blank check the selected memory &
page from Add. 0x6000 up to
0x6002

A << ”:050000046000600201346000CRLF” Blank check failed at Add. 0x6000

Blank Check
Memory

R >> ”:0500000400005FFF0123”
Blank check the selected memory &
page from Add. 0x0000 up to
0x5FFF

A << ”:0500000400005FFF0123XCRLF” Checksum error

23
7592B–AVR–01/06

CAN & UART based Bootloader
7.3.3.1 Programming / Erasing Memory Requests from Host

Table 7-8. Programming / Erasing Memory Requests from Host

7.3.3.2 Programming / Erasing Memory Answers from Bootloader

Table 7-9. Programming / Erasing Memory Answers from Bootloader

7.3.3.3 Programming / Erasing Memory Examples

Table 7-10. Programming / Erasing Memory Examples

7.3.4 Starting Application
The Host sends a start application message generating a jump to address 0x0000 in the Flash
memory.

No answer is returned by the bootloader.

Table 7-11. Start application Requests from Host

ISP Command
Request (R)

RECORD
LENGTH

OFFSET RECORD
TYPE

DATA
field

Program Memory “:” n First Address 0x00 n data

Erase Memory “:” 0x05 0x0000 0x04 0x00, 0xFF, 0x00, 0x00, 0x02

Answer (A) Character[0] Character[1] Character[2]
Command Done “.” “CR” “LF”

Wrong Checksum “X” “CR” “LF”

Error - Software Security Set
(“ISP Program Memory” only) “P” “CR” “LF”

ISP Command R/A Frame Comment

Program Memory
R >> ”:020000001234B8” Program in the selected memory & page

Add. 0x0000=0x12 & 0x0001=0x34

A << ”:020000001234B8.CRLF” Command Done

Erase Memory
R >> ”:0500000400FF000002F6” Erase selected memory

A << ”:0500000400FF000002F6.CRLF” Command Done

Program Memory
R >> ”:02000200567821” Program in the selected memory & page

Add. 0x0002=0x56& 0x0003=0x78

A << ”:02000200567821PCRLF” Security Set, program aborted.

Erase Memory
R >> ”:0500000400FF000002F0” Erase the selected memory

A << ”:0500000400FF000002F0XCRLF” Checksum error

ISP Command Request (R)
RECORD
LENGTH

OFFSET RECORD
TYPE

DATA
field

Start Application “:” 0x00 0x0000 0x01 no data

24
7592B–AVR–01/06

CAN & UART based Bootloader

8. Appendix A: #define in “config.h” file

8.1 Processor Definitions
// Global
#define AVR
#define AT90CAN128 1
#define AT90CAN64 2
#define AT90CAN32 3

// Hardware condition (for boot or application start)
 // INT on DVK90CAN1 board = INT0 or PD.0 - active low with pull-up
 #define PIN_HWCB PIND_Bit0
 #define PORT_HWCB PORTD_Bit0
 #define LEVEL_HWCB 0 // active at "0" or "1"
 #define PULLUP_HWCB 1 // pull-up "ON"="1", "OFF"="0"
/* // Center Key on DVK90CAN1 board = PE.2 active low with pull-up
 #define PIN_HWCB PINE_Bit2
 #define PORT_HWCB PORTE_Bit2
 #define LEVEL_HWCB 0 // active at "0" or "1"
 #define PULLUP_HWCB 1 // pull-up "ON"="1", "OFF"="0" */
// Application
#define USE_DEVICE AT90CAN128
#define USE_UART1
#define FOSC 8000

// Switches for Specific definitions
#ifndef USE_DEVICE
error You must define USE_DEVICE AT90CAN128, AT90CAN64 or AT90CAN32 first in
"config.h" file
elif USE_DEVICE == AT90CAN128
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x97 // 128 Kbytes of Flash
define PRODUCT_NAME 0x81 // AT90CAN family
define PRODUCT_REV 0x00 // rev 0
define FLASH_SIZE 0x1FFFF // in bytes
define FLASH_PAGE_SIZE 0x100 // in bytes
define BOOT_SIZE 0x2000 // in bytes
define EEPROM_SIZE 0x1000 // in bytes
elif USE_DEVICE == AT90CAN64
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x96 // 64 Kbytes of Flash
define PRODUCT_NAME 0x81 // AT90CAN family
define PRODUCT_REV 0x00 // rev 0
define FLASH_SIZE 0x0FFFF // in bytes
define FLASH_PAGE_SIZE 0x100 // in bytes
define BOOT_SIZE 0x2000 // in bytes
define EEPROM_SIZE 0x0800 // in bytes
elif USE_DEVICE == AT90CAN32
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x95 // 32 Kbytes of Flash
define PRODUCT_NAME 0x81 // AT90CAN family
define PRODUCT_REV 0x00 // rev 0
define FLASH_SIZE 0x07FFF // in bytes
define FLASH_PAGE_SIZE 0x100 // in bytes
define BOOT_SIZE 0x2000 // in bytes
define EEPROM_SIZE 0x0400 // in bytes
else
error USE_DEVICE definition is not referenced in "config.h" file
#endif

#ifndef USE_UART1
ifndef USE_UART2
error You must define either USE_UART1 or USE_UART2 in
"config.h" file
endif
#endif

// Polling pins definition
#ifdef USE_UART1
define PIN_UART_RX PINE_Bit0 // for UART0

25
7592B–AVR–01/06

CAN & UART based Bootloader
define PORT_UART_TX PORTE_Bit1 // for UART0
#endif
#ifdef USE_UART2
define PIN_UART_RX PIND_Bit2 // for UART1
define PORT_UART_TX PORTD_Bit3 // for UART1
#endif

#define PIN_CAN_RX PIND_Bit6
#define PORT_CAN_TX PORTD_Bit5

8.2 UART Definitions
//-------------- UART LIB CONFIGURATION ---------------
#define UART_AUTOBAUD_EXTERNAL_DETECTION
#define UART_MINIMUM
#define BDR_GENERATOR BRG_TIMER1
#define BAUDRATE AUTOBAUD
//#define BAUDRATE 19200
#define test_hit() uart_test_hit()
#define _getkey() uart_getchar()
#define putchar uart_putchar

8.3 Bootloader Definitions
//-------------- BOOTLOADER CONFIGURATION -------------
// Uart protocol
#define PROTOCOL_DATA 64
#define GLOBAL_BUFFER_SIZE PROTOCOL_DATA+4
#define NB_BYTE_MAX_FOR_DISPLAY_COMMAND 64
#define HEX_SIZE_DISP_PAGE 16

#define USE_RCS_HEX_PROTOCOL
#define USE_RCS_CAN_PROTOCOL

//----------- Bootloader identification definition ----
#define BOOT_VERSION 0x01 // @00 // Ver 01: JT-18.10.05
#define BOOT_ID1 0xD1 // @01
#define BOOT_ID2 0xD2 // @02

#define MAX_OFFSET_ID 0x7F0

#define NO_SECURITY 0xFF
#define RD_WR_SECURITY 0xFC
#define BSB_DEFAULT 0xFF
#define SSB_DEFAULT 0xFF
#define EB_DEFAULT 0xFF
#define NNB_DEFAULT 0xFF
#define CRIS_DEFAULT 0xFF // if (offset_id_copy>MAX_OFFSET_ID) offset_id_copy=0;
#define BTC1_DEFAULT 0xFF
#define BTC2_DEFAULT 0xFF
#define BTC3_DEFAULT 0xFF

#define SSB_RD_PROTECTION 0xFC
#define SSB_WR_PROTECTION 0xFE

8.4 Memory Definitions
//-------- Memory Definition -----------------
#define MEM_USER 0
#define MEM_CODE 0
#define MEM_FLASH 0
#define MEM_EEPROM 1
#define MEM_CUSTOM 2
#define MEM_BOOT 3 // Boot information
#define MEM_XAF 4 // Boot configuration
#define MEM_HW_REG 5
#define MEM_SIGNATURE 6

#define MEM_DEFAULT MEM_FLASH

#define PAGE_DEFAULT 0x00

26
7592B–AVR–01/06

CAN & UART based Bootloader

9. Appendix B: CAN Protocol Summary
Table 9-1. CAN Protocol Summary - Requests from Host

Table 9-2. CAN Protocol Summary - Answers from Bootloader

ISP Command Request
Identifier L Data

[0]
Data
[1]

Data
[2]

Data
[3]

Data
[4]

Data
[5]

Data
[6]

Data
[7] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 1 Node - - - - - - - Open or close communication

ID_PROG_START
((“CRIS”<<4)+ 1)

5 0x00 Start Address End Address - - - Initialization of programming

3 0x80 0xFF 0xFF - - - - - Full (selected memory) erasing

ID_PROG_DATA
((“CRIS”<<4)+ 2) n data[0..(n-1)] (n≤8) Data to program

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3) 5

0x00
Start Address End Address

- - - Display (read) data

0x80 - - - Blank check

ID_START_APPLI
((“CRIS”<<4)+ 4)

2
0x03

0x00 - - - - - - Start Application with reset

4 0x01 0x0000 - - - - Start Application jump add. 0

ID_SELECT_MEM_PAGE
((“CRIS”<<4)+ 6) 3

0x00

Memory
space Page

- - - - - No action

0x01 - - - - - Select Memory space

0x02 - - - - - Select Page

0x03 - - - - - Select Memory space & Page

ISP Command Answer
Identifier L Data

[0]
Data
[1]

Data
[2]

Data
[3]

Data
[4]

Data
[5]

Data
[6]

Data
[7] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 2

Boot
loader

revision

0x00 - - - - - - Communication closed

0x01 - - - - - - Communication opened

ID_PROG_START
((“CRIS”<<4)+ 1)

0 - - - - - - - - Initialization of programming
command OK

1 0x00 - - - - - - - Erase done

ID_PROG_DATA
((“CRIS”<<4)+ 2) 1

0x00 - - - - - - - Cmd. OK & end of transfer

0x02 - - - - - - - Cmd. OK & new data expected

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3)

n data[0..(n-1)] (n≤8) Data Read

0 - - - - - - - - Blank check OK

2 1st Failed Address - - - - - - Error on Blank check

ID_SELECT_MEM_PAGE
or ID_ERROR

((“CRIS”<<4)+ 6)
1 0x00 - - - - - - - Selection OK or

Error Software Security Set

27
7592B–AVR–01/06

CAN & UART based Bootloader

10. Appendix C: UART Protocol Summary
Table 10-1. UART Protocol Summary - Requests from Host

Table 10-2. UART Protocol Summary - Answers from Bootloader

ISP Command Request
RECORD
LENGTH

OFFSET RECORD
TYPE

Data
[0]

Data
[1]

Data
[2]

Data
[3]

Data
[4] ... Data

[n-1]

Program Memory “:” n First
Address 0x00 data[0..(n-1)] (n≤255)

Start Application “:” 0x00 0x0000 0x01 - - - - - - -

Select New Page “:” 0x02 Start
Address 0x02 [7..4]=Page

[3..0]=0x0 0x00 - - - - -

Select Memory “:” 0x02 0x0000

0x04

Memory
Space Page - - - - -

Read Memory “:” 0x05 0x0000 Start Address End Address 0x00 - -
Blank Check Memory “:” 0x05 0x0000 Start Address End Address 0x01 - -

Erase Memory “:” 0x05 0x0000 0x00 0xFF 0x00 0x00 0x02 - -

Answer Character[0] Character[1] Character[2] Character[3] ... Character[n]
Command done (OK) “.” “CR” “LF” - - -

Read Memory Command Done (OK) Address = data (16-byte formatted max.) + “CR” + “LF”

Wrong Checksum “X” “CR” “LF” - - -
Blank Check Memory Error 1st Failed Address “CR” “LF” - -

Error - Software Security Set
(“ISP Read Memory” only) “L” “CR” “LF” - - -

Error - Software Security Set
(“ISP Program Memory” only) “P” “CR” “LF” - - -

 Printed on recycled paper.

7592B–AVR–01/06

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR® AVR Studio® and others
are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trade-
marks of Microsoft Corporation. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’sAtmel’s products are not intended, authorized, or warranted for use as
components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

